Proteins

Enterolactone

Cat. No.: HY-108692 CAS No.: 78473-71-9 Molecular Formula: $C_{18}H_{18}O_4$ 298.33 Molecular Weight:

Target: Apoptosis; Endogenous Metabolite Pathway: Apoptosis; Metabolic Enzyme/Protease

-20°C Storage: Powder 3 years In solvent -80°C 6 months

-20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 30 mg/mL (100.56 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	3.3520 mL	16.7600 mL	33.5199 mL
	5 mM	0.6704 mL	3.3520 mL	6.7040 mL
	10 mM	0.3352 mL	1.6760 mL	3.3520 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description

Enterolactone is a bioactive phenolic metabolite known as a mammalian lignan derived from dietary lignans. Enterolactone has estrogenic properties and anti-breast cancer activity $^{[1]}$. Enterolactone is a radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis^[2].

In Vitro

Enterolactone (25-75 μ M; 48 hours) arrests the growth of MDA-MB-231 breast cancer cells in the 'S' phase [1] Enterolactone (25-75 μM; 15 hours) triggers apoptosis in MDA-MB-231 breast cancer cells via caspase-3 activation^[1]. Enterolactone inhibits TGF-β-induced migration of MDA-MB-231 breast cancer cells. Enterolactone inhibits TGF-β-induced invasion of MDA-MB-231 breast cancer cells through ECM. Enterolactone inhibits the TGF-β-induced EMT program in MDA-MB-231 breast cancer cells. Enterolactone reduces the formation of actin stress fibers by inhibiting the expression of CD44 and MAPK-p38. Enterolactone inhibits the ERK/NF-κB/Snail signaling pathway to revert TGF-β-induced EMT in MDA-MB-231

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay^[1]

Cell Line: MDA-MB-231 cells

Concentration:	25, 50, 75 μΜ
Incubation Time:	48 hours
Result:	There was a non-significant increase (~24%) in the S phase population following treatmen with 25 μ M EL, whereas there were significant increases (~34% and ~39%) following treatment with 50 and 75 μ M EL, respectively.

REFERENCES

[1]. Bigdeli B, et al. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol Appl Pharmacol. 2016;313:180-194.

[2]. Mali AV, et al. Enterolactone modulates the ERK/NF- κ B/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF- β -induced epithelial-mesenchymal transition. Cancer Biol Med. 2018;15(2):137-156.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech @ Med Chem Express.com$

Address: 1 Deer Park Dr, Suite F, Monmouth Junction, NJ 08852, USA