Technical support: support@abbkine.com

Website: https://www.abbkine.com

CheKine™ Anthocyanidin reductase (ANR) Activity Colorimetric Assay Kit

Cat #: KTB3010 Size: 48 T/96 T

[<u>=</u> Q	Anthocyanidin reductase (ANR) Activity Colorimetric Assay Kit				
REF	Cat #: KTB3010	LOT	Lot #: Refer to product label		
	Applicable samples: Plant Tissues				
Ĵ.	Storage: Stored at -20°C for 6 months				

Assay Principle

Anthocyanidin reductase (ANR) is a key enzyme in the biosynthesis of procyanidins, catalyzing anthocyanidins to produce cis-flavane-3-alcohols and plays an important role in the synthesis of flavonoids and accumulation of anthocyanins in plants. CheKineTM Anthocyanidin reductase (ANR) Activity Colorimetric Assay Kit provides a convenient tool for detection of ANR Activity. The principle is that ANR catalyzes the production of flavane-3-alcohol and NADP+ from acetyl anthocyanins and NADPH. NADPH has an absorption peak at 340 nm, but NADP+ does not. The enzyme activity of ANR was calculated by detecting the rate of decrease in absorption at 340 nm.

Materials Supplied and Storage Conditions

Vit commonante	Size		Ctorono conditiono
Kit components	48 T	96 T	Storage conditions
Extraction Buffer	50 mL	100 mL	4°C
Reagent I	10 mL	20 mL	4°C
Reagent II	1	1	-20℃
Reagent III	1	1	-20℃
Reagent IV	1	1	4°C

Materials Required but Not Supplied

- Microplate Reader capable of measuring absorbance at 340 nm
- · Incubator, Ice Maker, Refrigerated Centrifuge
- 96-well UV microplate, Precision Pipettes, Disposable Pipette Tips
- · Deionized Water
- · Anhydrous ethanol
- Dounce homogenizer (for Tissue Samples)

Reagent Preparation

Extraction Buffer: Ready to use as supplied. Shake thoroughly before use. Store at 4°C.

Reagent I: Ready to use as supplied. Store at 4°C.

Reagent II: Powder. Add 1 mL Deionized Water for 96 T or 0.5 mL Deionized Water for 48 T to dissolve before use. This solution can be stored at -20°C after aliquoting to avoid repeated freezing and thawing.

Reagent III: Powder. Add 1 mL 50% ethanol for 96 T or 0.5 mL 50% ethanol for 48 T to dissolve before use. This solution can be stored at -20°C after aliquoting to avoid repeated freezing and thawing.

Reagent IV: Powder. Add 1 mL Deionized Water for 96 T or 0.5 mL Deionized Water for 48 T to dissolve before use. Store at 4°C.

Sample Preparation

Note: Fresh samples are recommended, If not assayed immediately, samples can be stored at -80°C for one month.

Plant Tissues: Weigh 0.1 g tissue, add 1 mL Extraction Buffer and homogenize on ice. Centrifuge at 10,000 g for 10 min at 4°C. Use supernatant for assay, and place it on ice to be tested.

Assay Procedure

- 1. Preheat the microplate reader for more than 30 min, and adjust the wavelength to 340 nm.
- 2. Preheat the incubator to 37°C.
- 3. Add the following reagents:

Reagent	Test well (µL)	Control well (μL)			
Reagent I	170	170			
Reagent II	10	10			
Reagent III	5	5			
Sample	10	0			
Mix thoroughly at 37°C for 30 min					
Reagent IV	5	5			
Sample	0	10			

^{4.} Mix thoroughly, detect absorbance of test well and contrast well at 340 nm, named A_{Test}, A_{Control}, ΔA=A_{Control}-A_{Test}.

Note: In order to guarantee the accuracy of experimental results, need to do a pre-experiment with 2-3 samples. If ΔA is less than 0.001, increase the sample quantity appropriately. If ΔA is greater than 0.4, the sample can be appropriately diluted with Extraction Buffer, the calculated result multiplied by the dilution factor, or decrease the sample quantity appropriately.

Data Analysis

Note: We provide you with calculation formulae, including the derivation process and final formula. The two are exactly equal. It is suggested that the concise calculation formula in bold is final formula.

1. Calculated by protein concentration

Unit Definition: 1 nmol NADPH oxidated per min in 1 mg tissue protein reaction system is defined as a unit of enzyme activity. ANR (U/mg prot)= $(\Delta A_{Test} \div \epsilon \div d \times V_{Reaction\ Total} \times 10^9) \div (Cpr\ \times V_{Sample}) \div T \times n = 214.36 \times \Delta A_{Test} \div Cpr \times n$

2. Calculated by fresh weight of samples

Unit Definition: 1 nmol NADPH oxidated per min in 1 g tissue reaction system is defined as a unit of enzyme activity.

Version 20220525

ANR (U/g)= $(\triangle A_{Test} + \varepsilon + d \times V_{Reaction Total} \times 10^9) + (W \times V_{Sample} + V_{Sample} + T \times n = 214.36 \times \triangle A_{Test} + W \times n = 214.36 \times \triangle A_{Test} +$

Where: ϵ : NADPH molar extinction coefficient, 6.22×10^3 L/mol/cm; d: 96 well plate diameter, 0.5 cm; $V_{Reaction\ Total}$: total reaction volume, 200 μ L= 2×10^{-4} L; 10^9 :1 mol= 1×10^9 nmol ;Cpr: sample protein concentration, mg/mL; V_{Sample} : sample volume added, 0.01 mL; T: reaction time, 30 min; n: dilution factor; W: sample weight, g; $V_{Sample\ Total}$: Extraction Buffer volume added, 1 mL.

Typical Data

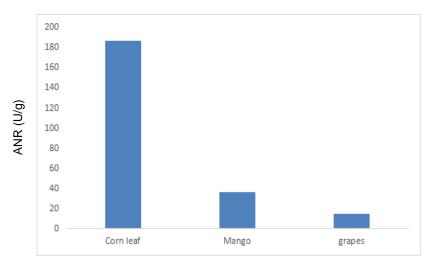


Figure. ANR Activity in Corn leaf, Mango and Grapes respectively. Assays were performed following kit protocol.

Recommended Products

Catalog No.	Product Name		
KTB1541	CheKine™ Tannin Colorimetric Assay Kit		
KTB1542	CheKine™ Tannase (TAN) Activity Colorimetric Assay Kit		

Disclaimer

The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes.

