TMB, ULTRASENSITIVE

A Single Component-Soluble Substrate for Kinetic and Endpoint Assays of Horseradish Peroxidase

ALTERNATE NAME:	3,3',5,5'-Tetramethylbenzidine; TMBUS
CATALOG \#:	1215-100
AMOUNT:	100 ml
STORAGE CONDITIONS:	$2-8{ }^{\circ} \mathrm{C}$
SHELF LIFE:	Stable for up to 12 months at $-20^{\circ} \mathrm{C}$
TMBUS SOLUTION:	Contains TMB, $2.08 \mathrm{mMol} \mathrm{L}^{-1}$ and Hydrogen Peroxide, citric acid buffer at pH 3.3 . Also contains non-toxic proprietary stabilizers. Warm to assay temperature before use.

INTRODUCTION:

3,3'5,5'-Tetramethylbenzidine (TMB) has been shown to be a safe-sensitive substrate for the assay of horseradish peroxidase (HRP). Initially, in the presence of HRP and hydrogen peroxide, a one-electron oxidation product is formed. This compound, a cation free radical, is blue in color with an adsorption maximum at 653 nm . Further reaction with $\mathrm{HRP} / \mathrm{H}_{2} \mathrm{O}_{2}$ or acidification of the radical with acid yields the diimine terminal oxidation product adsorbing light at 450 nm . The extinction coefficient of the radical ($E_{653 \mathrm{~nm}}=3.9 \times 10^{4} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) and diimine ($\mathrm{E}_{450 \mathrm{~nm}}=5.9 \times 10^{4}$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$) provide a remarkably sensitive system for the assay of HRP and HRP labeled probes. TMBUS, available from Biovision Inc., is a single component reagent stable at room temperature and not sensitive to normal laboratory light. It is optimized with respect to TMB and hydrogen peroxide concentrations and yields a linear response with the concentrations of HRP usually employed in immunologic assays.

ASSAY DESCRIPTION:

After completion of analyte binding to a solid phase and reaction with a HRP labeled probe, TMBUS solution is added. Oxidation of TMB produces a blue reaction product that is measured at 650 nm . The color formation as a function of time can be recorded or the reaction stopped with sulphuric acid after a fixed interval. Increased sensitivity can be achieved by converting the blue radical to the diimine by addition of acid. The resulting yellow chromogen is measured immediately at 450 nm .

STOP SOLUTION:

$0.3 \mathrm{Mol} / \mathrm{L}$ Sulphuric acid for stopping reaction and preserving blue chromogen. (Not provided).
NOTE: Reagent grade water must contain less than $10^{-7} \mathrm{Mol} \mathrm{L}^{-1}$ of iron or copper salts otherwise unreacted TMB will be converted non-enzymatically to the diimine.

FOR RESEARCH USE ONLY! Not to be used in humans.

PROTOCOL:

1. Complete all required incubations with antibodies, probes and HRP labeled reagents.
2. Wash plate wells at least 4 times with phosphate buffered saline or tris buffered saline containing 0.1% Tween-20
3. After the final wash, shake and blot all residual buffers from plate wells.
4. Add 0.1 ml of TMBUS Solution to appropriate wells and incubate $5-30$ minutes.

NOTE: The reaction time will depend upon the activity of the HRP probe. If color develops too briskly, zero order kinetics will not prevail. Dilution of a probe, antibody, HRP labeled reagent may be required.
5. The reaction can be monitored as a function of time for kinetic assays or stopped with 0.1 ml of $0.3 \mathrm{Mol} / \mathrm{L}$ of sulphuric acid or 0.1% sodium fluoride and read at 650 nm .
6. If the procedure demands conversion to the yellow diimine, add 0.1 ml of either acid or record the absorbance within 5 minutes.

NOTE: Protect from direct sunlight. Discard if solution is blue or turbid.

RELATED PRODUCTS:

- ABTS ${ }^{\text {TM }}$ (Cat \#: 1212-100)
- TMB, HIGH KINETICS (Cat \#: 1216-100)
- SuperMOUNT ${ }^{\text {TM }}$ Mounting Medium (Cat\#: 1211-20)

